Congratulations to Our 2024 Grand Prize and First Place Winners!

NETrolyze, a novel immunotherapy for triple-negative breast cancer (TNBC), was named the $25,000 grand prize winner at a live finalist round held November 15 in New York. The first-in-class therapeutic injectable gel prevents the spread of TNBC, one of the most aggressive cancer types, enabling patients to avoid toxic chemotherapy and expensive treatments – potentially transforming their lives. Click here for the full list of 2024 winners. Also see the Top 100 highest scoring entries.

Help build a better tomorrow

Since Tech Briefs magazine launched the Create the Future Design contest in 2002 to recognize and reward engineering innovation, over 15,000 design ideas have been submitted by engineers, students, and entrepreneurs in more than 100 countries. Join the innovators who dared to dream big by entering your ideas today.

Read About Past Winners’ Success Stories

Special Report spotlights the eight top entries in 2023 as well as past winners whose ideas are now in the market, making a difference in the world.

Click here to read more

A ‘Create the Future’ Winner Featured on ‘Here’s an Idea’

Spinal cord injury affects 17,000 Americans and 700,000 people worldwide each year. A research team at NeuroPair, Inc. won the Grand Prize in the 2023 Create the Future Design Contest for a revolutionary approach to spinal cord repair. In this Here’s an Idea podcast episode, Dr. Johannes Dapprich, NeuroPair’s CEO and founder, discusses their groundbreaking approach that addresses a critical need in the medical field, offering a fast and minimally invasive solution to a long-standing problem.

Listen now

Thank you from our Sponsors

“At COMSOL, we are very excited to recognize innovators and their important work this year. We are grateful for the opportunity to support the Create the Future Design Contest, which is an excellent platform for designers to showcase their ideas and products in front of a worldwide audience. Best of luck to all participants!”

— Bernt Nilsson, Senior Vice President of Marketing, COMSOL, Inc.

“From our beginnings, Mouser has supported engineers, innovators and students. We are proud of our longstanding support for the Create the Future Design Contest and the many innovations it has inspired.”

— Kevin Hess, Senior Vice President of Marketing, Mouser Electronics

Follow Create the Future

Improved Prosthetic Joints

Votes: 0
Views: 8270
Medical

In the United States, millions of people have artificial hips, knees, and other implanted prosthetic joints. Many projections estimate an annual need for 500,000 total hip replacements and 3,000,000 total knee replacements in the United states by 2030, at a cost exceeding $40 billion. The increase in total hip and knee replacements is a worldwide trend, and health care costs for joint replacements are rising rapidly in all developed nations.

Prosthetic joints present a range of difficult design and bioengineering problems. Their operating environment is chemically corrosive and biologically active. They must form robust, reliable interfaces with living tissue, while handling a complex variety of static and dynamic loads resulting from their users’ activities. Finally, they must function reliably for decades in increasingly younger and more active patients.

To date, these engineering problems have been imperfectly solved. Prosthetic joints fail in several modes, mostly by mechanical wear at their opposed load-bearing surfaces. Surface wear leads to outright joint failure, and creates particles that can cause both local and systemic adverse reactions. A variety of materials (metals, HD polyethylene, and ceramics) have been used in making prosthetic joints, but wear remains a costly and destructive problem.

Nearly all joint wear mechanisms include mechanical load as a controlling influence. The higher the load, the faster the wear. Load reduction has been essentially ignored as an engineering means of extending prosthetic joint lifetime.

My technology will reduce joint wear rates by incorporating small arrays of magnets within the joints to reduce the forces developed at opposing surfaces. Magnets behind opposed joint faces will be oriented in mutual repulsion so that a large portion of the force that would be resolved at the opposed joint faces will be carried by the magnets and resolved at their fixed mounting positions within the joint – that is, not at the moving surfaces. This decreased surface load will reduce surface wear, and will greatly extend joint life. Initial simulations indicate that surface loads can be reduced over 90% by this method.

The magnet arrays will be integrated into the joint structure so that they will not be exposed to the bioenvironment. This will eliminate potential materials biocompatibility issues and should accelerate clinical testing and regulatory acceptance. Incorporating magnetic load reduction into the manufacturing process flow will be straightforward and will increase unit costs by less than 10%.

Marketing and manufacturing channels are already in place to develop and deploy this technology. American artificial joint manufacturers such as Zimmer Orthopaedics, StelKast, and Stryker Orthopaedics are entirely capable of performing all product development activities this technology would require, from initial design and simulation through clinical testing to commercial marketing.

This technology could double the average wear life of total hip and knee prosthetic replacement joints. In the United States alone, this would reduce the costs of total hip and knee replacement procedures by $2 billion annually. It would enhance quality of life and productivity for millions of people.

  • Awards

  • 2012 Top 100 Entries

Voting

Voting is closed!

  • ABOUT THE ENTRANT

  • Name:
    J Michael Pinneo
  • Type of entry:
    individual
  • Profession:
    Engineer/Designer
  • Number of times previously entering contest:
    1
  • J Michael's favorite design and analysis tools:
    COMSOL, Sketchup, Solidworks, AutoCAD, Excel, Papers
  • For managing CAD data J Michael's company uses:
    None
  • J Michael's hobbies and activities:
    archery, CVD diamond synthesis R&D
  • J Michael belongs to these online communities:
    LinkedIn
  • J Michael is inspired by:
    Solving hard problems with simple and affordable tech.
  • Software used for this entry:
    COMSOL, AutoCad, Excel, Papers2
  • Patent status:
    pending