Congratulations to Our 2024 Grand Prize and First Place Winners!

NETrolyze, a novel immunotherapy for triple-negative breast cancer (TNBC), was named the $25,000 grand prize winner at a live finalist round held November 15 in New York. The first-in-class therapeutic injectable gel prevents the spread of TNBC, one of the most aggressive cancer types, enabling patients to avoid toxic chemotherapy and expensive treatments – potentially transforming their lives. Click here for the full list of 2024 winners. Also see the Top 100 highest scoring entries.

Special thanks to our esteemed panel of judges.

Help build a better tomorrow

Since Tech Briefs magazine launched the Create the Future Design contest in 2002 to recognize and reward engineering innovation, over 15,000 design ideas have been submitted by engineers, students, and entrepreneurs in more than 100 countries. Join the innovators who dared to dream big by entering your ideas today.

Read About Past Winners’ Success Stories

Special Report spotlights the eight top entries in 2023 as well as past winners whose ideas are now in the market, making a difference in the world.

Click here to read more

A ‘Create the Future’ Winner Featured on ‘Here’s an Idea’

Spinal cord injury affects 17,000 Americans and 700,000 people worldwide each year. A research team at NeuroPair, Inc. won the Grand Prize in the 2023 Create the Future Design Contest for a revolutionary approach to spinal cord repair. In this Here’s an Idea podcast episode, Dr. Johannes Dapprich, NeuroPair’s CEO and founder, discusses their groundbreaking approach that addresses a critical need in the medical field, offering a fast and minimally invasive solution to a long-standing problem.

Listen now

Thank you from our Sponsors

“At COMSOL, we are very excited to recognize innovators and their important work this year. We are grateful for the opportunity to support the Create the Future Design Contest, which is an excellent platform for designers to showcase their ideas and products in front of a worldwide audience. Best of luck to all participants!”

— Bernt Nilsson, Senior Vice President of Marketing, COMSOL, Inc.

“From our beginnings, Mouser has supported engineers, innovators and students. We are proud of our longstanding support for the Create the Future Design Contest and the many innovations it has inspired.”

— Kevin Hess, Senior Vice President of Marketing, Mouser Electronics

Follow Create the Future

IDEA™ Enhanced Pulse Oximetry

Votes: 29
Views: 15677
Medical

The left-ventricular stroke volume (or stroke volume, for short) is how much volume of blood the heart pumps with each heart beat. Stroke volume is important because it is a direct indicator of heart efficiency and health. Today, stroke volume can only be measured invasively using a Swan-Ganz catheter or via ultrasound echocardiography. Catheter is insertion risky and limited to special surgeries. Echocardiography is noninvasive but cumbersome, highly subjective and therefore unreliable. As a result, a noninvasive, convenient and reliable measurement of stroke volume is considered to be the “Holy Grail” of hemodynamic assessment. We have attained this goal by enhancing pulse oximetry.

Pulse oximetry measures light absorption by blood as it pulses with each heart beat. In conventional pulse oximetry, the height of the pulses are converted to blood oxygenation. As it turns out, these light pulses contain far more than oxygenation levels: it also carries information about the patient’s cardiovascular system, including stroke volume and cardiac output. However, the information is embedded in the detailed shape of the pulse and the way it changes over time, so extracting it is difficult. Conventional digital signal processing methods are not up to the task because those merely focus on particular features of the pulse. Instead, this problem requires software capable of analyzing the entire pulse dynamics. To this end, we have created the Intelligent Data Extraction Algorithm or IDEA™. IDEA™ is an elegant confluence of recent advances in probabilistic inference, unsupervised machine learning and quantitative medicine. As such, it represents a paradigm shift in data processing, one that is capable of “understanding” noisy pulse signals and interpreting them in a physiological context.

IDEA™ technology enhances existing pulse oximeter hardware with a noninvasive, continuous and realtime stroke volume measurement. This solves several vital clinical needs that cannot be met with current technology. During anesthesia, surgery and recovery, our enhanced pulse oximeter can track the patient’s hemodynamic evolution throughout, warning against possible adverse reactions or “silent hemorrhages” that do not show up in any standard monitoring equipment. In the neonatal ward, it can monitor babies born with congenital heart disease or poor blood flow. At home, it can be used to monitor patients with chronic heart conditions (the top killer in the US) and warn doctors about developing acute problems such as arrhythmias and heart attacks. In the battlefield and disaster areas, our device can dramatically improve the speed and accuracy of triage to save the lives of injured soldiers and victims. Many other medical practices necessitate the use of noninvasive and continuous stroke volume monitoring to expand the amount of vital information available at the patient care area and eliminate the need for risky invasive procedures. IDEA™ will be sold as a software library that can be used to enhance existing hardware, therefore minimizing capital outlay by the customer while lowering acceptance and learning barriers.

  • Awards

  • 2010 Medical Category Winner

Voting

Voting is closed!

  • ABOUT THE ENTRANT

  • Name:
    Rodrigo Teixeira
  • Type of entry:
    team
    Team members:
    Rodrigo E. Teixeira, Alton J. Reich, Stephen F. Malin
  • Profession:
    Scientist
  • Number of times previously entering contest:
    never
  • Rodrigo's favorite design and analysis tools:
    MatLab, SolidEdge, imagination with a pen and paper.
  • Rodrigo's hobbies and activities:
    Skiing, soccer, fixing stuff with my kids.
  • Rodrigo belongs to these online communities:
    Stanford University Alumni Association
  • Rodrigo is inspired by:
    Simplicity.
  • Software used for this entry:
    LabView, MatLab
  • Patent status:
    pending