The pancreatic Islets contain Alpha cells, which release glucagon to avoid hypoglycemia and the Beta cells that release the insulin to allow cells to uptake the glucose. In type 1 diabetes (T1DM), the body's immune system destroys these beta cells and ability to make insulin.
This proposal introduces the proprietary and breakthrough wearable bioartificial pancreas called “mPANCREAS” that releases insulin release on demand emulating true pancreas and also releases glucagon if blood sugar dips to dangerous levels avoiding serious hypoglycemia, coma and death. The “mPANCREAS” is designed to be biomimetic, modular and miniaturized to replace pancreas and islet transplantation which have a very high rates of failure and a great deal of morbidity and mortality.
The main components of the mPANCREAS are the specialized modular, scalable “Islet-On-Chip” (I.O.C.) Biochipsets, which are fabricated exploiting the proprietary and innovative MCAL Chipset Platform design. This unique design converts the microfluidic-channels into micro-tunnels by sealing them with semipermeable membranes that are commercially available to mimic all-important capillaries, which are the sticking point in achieving high fidelity tissue engineering. These biochipsets are constructed by sandwiching two membranes that allow oxygen and nutrient to pass through in between three layers of microfluidic channels. Hence, employing the cutting-edge science of microfabrication, special multilayer-biochips are fabricated that provide 1) micro-channels that emulates the capillaries, 2) facilitate a 3-layer, 3-D structure that has a well-perfused reservoir in the middle layer and two outer capillary layers that provide a unique and supportive architecture that offer a construct similar to well-vascularized pancreas that provides plenty of oxygen and nutrients to metabolically demanding Islets.
These IOC-Biochipsets are very thin and designed with the following unique and crucial features 1) provide a reservoir to hold the islets in place 2) provide blood supply to the islets 3) use the routinely discarded precious islets called Mantel Islets (with a rim of pancreatic tissue) saving 20-30% of islets from each pancreas 4) allow other components of the Pancreas with regenerative potentials not used in Islet transplant 5) Provide Immuno-isolation of the islets from attack by the patient’s immune system and 6) to respond to patient’s blood sugar and release insulin or glucagon accordingly.
Then, a compilation of ten (10) of these IOC-Chipsets are connected in parallel fashion to produce the IOC-Biochipset-Modules. The “mPANCREAS” is a collection of several IOC-Modules joined in a parallel fashion. The compilation of these IOC-Modules within a cartridge is very well integrated and produce mPANCREAS that is adjustable and scalable, hence, Modules can be changed if any of these biochipset fails.
The unique features of mPANCREAS and its modular and scalable components will ensure achieving the objectives to develop a wearable, smaller yet biomimetic and highly efficient bio-artificial pancreas in a safe manner and at reduced cost for mass production and clinical use. It will revolutionizes treating T1DM and addresses unmet needs and tackle the issues plaguing our T1DM by tapping into major branches of science to achieve great leaps in insulin treatment that is more humane, safer and more efficacious.
Like this entry?
-
About the Entrant
- Name:Mordechai Nosrati
- Type of entry:individual
- Software used for this entry:NA
- Patent status:pending