Human Powered Ornithopter

Votes: 2
Views: 6467
Transportation

Flapping winged flight is the most efficient means of transportation in the natural world; consider that birds migrate thousands of miles on very little energy. Since Da Vinci men have dreamed of emulating the elegance of birds. Several fixed-wing designs have proven that the human body is capable of powering significant flight distances e.g. the gossamer albatross. With today's materials and construction techniques the dream of human-powered ornithoptic (HPO) flight is well within reach.

My design for HPO follows the basic size and shape of log-proven hang-gliders, combined with modern flexible composite materials to achieve a lightweight and flexible wing, based on my concept of “Tapered-spring-energy.” Find a feather, any feather at all, and you will notice that it is stiff at the base, and acts like a tapered spring; like a modern fishing pole. Bird’s wings do the exact same thing – stiff at the base and more flexible at the ends – like a tapered leaf-spring. My deign acts like two huge, flattened out, fishing poles for the ‘wing bone’ and then smaller curved fishing poles for the ‘feathers.’

The main wing bone, or wing-spring, is a simple flat rectangular construction of carbon-fiber and flexible epoxy resin cut in half diagonally. The ‘feather-quills’ are similar in design, except that that are curved like feathers to create the airfoil shape of the wing that is covered with rip-stop nylon like a hang-glider. The wings are hinged to a rigid carbon-fiber frame. My calculations put the finial weight to be less than 75 Lbs – similar to a hang-glider of the same size.

The wings are powered by a ‘squatting’ motion of the legs. Just like a bird uses both of its powerful breast muscles at the same time, the HPO will use both legs to input energy into the wing-springs on the down stroke. The upstroke is almost free due to aerodynamic forces. Notice that a bird’s back muscles are about 10% of their breast muscles. It’s easy to imagine a mechanical ‘assist’ with compressed air for take-off and landing.

This concept represents an extension of the existing hang-glider industry, except there need not be any cliffs to jump off; or it might even become a new way to make your morning commute.

After proof of concept and final prototyping, manufacturing would follow existing carbon-fiber-epoxy techniques. Basically it’s a combination of existing hang-glider manufacture, with fishing pole manufacture, and a body shop.

http://embeecon.com/Ornithopter/index.htm

Voting

Voting is closed!

  • ABOUT THE ENTRANT

  • Name:
    Matthew Bailey
  • Type of entry:
    individual
  • Profession:
    IT Consultant
  • Number of times previously entering contest:
    2
  • Matthew's favorite design and analysis tools:
    1) My imagination/visualization
    2) Pencil and paper
    3) TrueSpace7
    4) Go to 1) above
  • For managing CAD data Matthew's company uses:
    Windows 7 File Explorer
  • Matthew's hobbies and activities:
    Gadgetteering,
  • Matthew is inspired by:
    Nature lays the ultimate pattern for humans to emulate. When you discover a nugget of the Chaos, Scale, and Synch that fills the world around you it begs to be explored.
    -M*
  • Software used for this entry:
    TrueSpace & Canvas
  • Patent status:
    none